International Workshop on Orbital and Spin Magnetism of Actinides (IWOSMA-3) W. Temmerman, J. Tobin, G. van der Laan November 16, 2006 #### **Disclaimer** This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. # International Workshop on Orbital and Spin Magnetism of Actinides (IWOSMA-3) # **Walter Temmerman** Daresbury United Kingdom # **James Tobin** Lawrence Livermore National Laboratory United States # Gerrit van der Laan Daresbury Laboratory United Kingdom September 20, 2006 # 1 Workshop Details # 1.1 Details # **Timing** Number of days : 2 Start : 2006-06-01 end : 2006-06-02 ## Location of the activity CECAM 46 allée d'Italie 69007 Lyon France # 1.2 Description This International Workshop on Orbital and Spin Magnetism of Actinides (IWOSMA) is the third in a series. The first workshop took place in Daresbury in 1999 and the second in Berkeley, CA, USA in 2002. These workshops are informal gatherings of theoreticians and experimentalists addressing the latest issues in the electronic and magnetic properties of actinides. # 1.3 Scientific Objectives The magnetism of transition metal systems and lanthanide systems is now fairly well understood, where d and f electrons can be described in a delocalized and localized model, respectively. On the other hand, actinide systems do not fit in such a description. The localization of the 5f is in between that of the 3d and 4f and the strong spin-orbit interaction necessitates a relativistic approach. Furthermore, electron correlation effects play a major role in these compounds. Recently, it has become possible to determine element-specific magnetic moments using neutron diffraction and x-ray scattering and absorption. The latter technique makes it even possible to separate the orbital and spin contribution to the total magnetic moment. The results are very interesting but difficult to reproduce with present state-of-art calculations. Not only a very large orbital polarization but also a large magnetic dipole term has been measured in cubic compounds, such as US. This allows for severe testing of the extra terms included in band theory to account for orbital polarization. It is also clear that deeper insight in magnetism can be obtained by studying the unusual behaviour of the actinides. The recent development and application of such techniques as DMFT could contribute to the understanding of magnetism in actinides. Despite the fact that actinides for health reasons will find less application in technological market products, the understanding of their magnetic and electronic properties will no doubt provide key elements for a general description of electron correlation and relativistic effects. # 2 Requested Support CECAM Psi-k # 3 Participant List **Sebastien Lebegue** (sebastien.lebegue@lcm3b.uhp-nancy.fr) LCM3B (UMR UHP -CNRS 7036) France Rajeev Ahuja (Rajeev.Ahuja@fysik.uu.se) University of Uppsala Sweden Arno Hiess (hiess@ill.fr) **ILL France** Alain Yaouanc (ayaouanc@wanadoo.fr) **CEA France** Ingo Opahle (i.opahle@ifw-dresden.de) IFW Dresden Germany Claude Guet (claude.guet@cea.fr) **CEA-DAM France** Martin Lueders (m.lueders@dl.ac.uk) Daresbury Laboratory United Kingdom Saad Elgazzar (s.elgazar@ifw-dresden.de) FW Dresden e.V., P.O. Box 270 0, D-01171 Dresden Germany Scott McCall (mccall10@llnl.gov) LLNL United States **E.K.U. Gross** (hardy@physik.fu-berlin.de) Freie Universitat Berlin Germany Malcolm Stocks (stocksgm@ornl.gov) **ORNL United States** Upadhi Kabra (upadhi@iitb.ac.in) Uppsala University Sweden **Heiko Wende** (wende@physik.fu-berlin.de) Freie Universitaet Berlin Germany Gabi Kotliar (kotliar@physics.rutgers.edu) **Rutgers United States** Andrei Rogalev (rogalev@esrf.fr) **ESRF** France # Fabrice Wilhelm (wilhelm@esrf.fr) **ESRF** France # Gerry Lander (lander@ill.fr) JRC-ITU France # Mike Brooks (Michael.Brooks@fysik.uu.se) Uppsala Sweden # Axel Svane (svane@phys.au.dk) Aarhus Denmark # Franck Wastin (franck.wastin@ec.europa.eu) Karlsruhe Germany # Ladia Havela (havela@mag.mff.cuni.cz) Prague Czech Republic # Z. (Dzidka) Szotek (z.szotek@dl.ac.uk) Daresbury Laboratory United Kingdom # Sergej Savrasov (savrasov@physics.ucdavis.edu) Univeristy of California United States # Michel Penicaud (michel.penicaud@cea.fr) cea France # Alain Pasturel (alain.pasturel@grenoble.cnrs.fr) **CNRS** France # **Hubert Ebert** (he@gaia.cup.uni-muenchen.de) Univ. München Germany ## Johann Bouchet (johann.bouchet@cea.fr) **CEA-DIF** France # Bernard Amadon (bernard.amadon@cea.fr) CEA-DIF, Bruyères le Châtel France # 4 Presentation List How to calculate the critical temperature of superconductors E.K.U. Gross Freie Universitat Berlin, Germany #### **Abstract** The traditional model of Bardeen, Cooper and Schrieffer (BCS) properly describes the universal features that all conventional superconductors have in common, but it is not able to make accurate predictions of materials specific properties such as the critical temperature. To tackle this problem, a novel density-functional approach is developed [1] which treats both the electronphonon interaction and the electron-electron repulsion on the same footing. The formalism can be viewed as the superconducting generalization of the multi-component density-functional theory [2] for electrons and nuclei. Approximations of the universal xc functionals are derived on the basis of many-body perturbation theory [1,3]. In this way, a true ab-initio description is achieved which does not contain any empirical parameters. Numerical results for the critical temperature, the gap, the jump of the specific heat, and the exponent of the isotope effect will be presented for simple metals [4], for MgB₂ [5], and for Li, Al and K under pressure. In particular, for MgB₂, the two gaps and the specific heat as function of temperature are in very good agreement with experimental data. For Li and Al under pressure the calculations explain why these two metals behave very differently, leading to a strong enhancement of superconductivity for Li and to a clear suppression for Al with increasing pressure [6]. Finally, the peculiar properties of Pb are found to arise from two-gap superconductivity, somewhat similar to MgB₂. #### References - [1] M. Lüders et al, Phys. Rev. B **72**, 024545 (2005). - [2] T. Kreibich, E.K.U. Gross, PRL **86**, 2984 (2001). - [3] S. Kurth, M. Marques, M. Lüders, E.K.U. Gross, PRL 83, 2628 (1999). - [4] M. Marques et al, Phys. Rev. B **72**, 024546 (2005). - [5] A. Floris et al, PRL **94**, 037004 (2005). - [6] G. Profeta et al, PRL **96**, 047003 (2006). # Orbital Ordering in actinide oxides: new perspectives on old problems #### **Gerry Lander** JRC-ITU, France ### **Abstract** The behaviour of the actinide oxides has been of major interest since the 1940s. UO_2 is known to order with antiferromagnetic order since neutron experiments of the 1960s. However, the puzzle of the lack of ordered magnetism in NpO_2 (also dating from the same period) was recently solved by the discovery [1,2] that the ordering phenomenon in NpO_2 is not connected with dipole moments (as in UO_2), but rather with the long-range ordering (at 25 K) of the anisotropic 5f charge distribution surrounding the Np^{4+} ion. Such ordering involves the 5f quadrupole charge distributions, and is commonly known as "orbital ordering". It cannot be observed with neutrons (or muons) but can be measured by resonant x-ray scattering. Following the work on pure NpO_2 , we have re-examined single crystals of $(U_{0.75}Np_{0.25})O_2$ and shown that both the U and Np ions in this material exhibit dipole and quadrupole ordering [3]. All theoretical models of UO_2 emphasize the importance of the interplay between the Jahn-Teller and quadrupolar interactions, but direct evidence for such quadrupolar ordering was difficult to find in UO_2 as the quadrupolar interactions are weaker than the dominating dipole ones. We have now provided that evidence [4] and also shown definitively the triple-q nature of the magnetic ordering in UO_2 . [5] This talk will review these experiments, some of the theories currently being advanced, and what remains to be done in understanding these complex actinide oxides at low temperature. #### References - [1] J. A. Paixao et al., Phys. Rev. Lett. **89**, 187202 (2002) - [2] R. Caciuffo et al., J. Phys. CM 15, S2287 (2003), and references therein - [3] S. B. Wilkins et al., Phys. Rev. B **70**, 214402 (2004) - [4] S. B Wilkins et al., Phys. Rev. B **73**, 060406 (R) (2006) - [5] E. Blackburn et al., Phys. Rev. B **72**, 184411 (2005) # Determining the Electronic Structure of Pu using Unorthodox Spectroscopies James Tobin Lawrence Livermore National Laboratory, United States #### **Abstract** The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and i (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) i and inverse photoelectron spectroscopy (unoccupied or conduction bands). i Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, i very small and/or having poorly defined surfaces. i Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states i have further complicated the situation. i Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, i to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. i The talk will include a discussion of resonant photoelectron spectroscopy [1], i x-ray absorption spectroscopy [1,2,3,4], i electron energy loss spectroscopy [2,3,4], i Fano Effect measurements [5], i and bremstrahlung isochromat spectroscopy [6], including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples. [2,3,6] This work was performed under the auspices of the U.S. DOE by Univ. of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48. #### References - 1. J.G. Tobin, B.W. Chung, R. K. Schulze, J. Terry, J. D. Farr, D. K. Shuh, K. Heinzelman, E. Rotenberg, G.D. Waddill, and G. Van der Laan, "Resonant Photoemission in f-electron Systems: Pu and Gd", Phys. Rev. B **68**, 155109 (October 2003). - 2. K.T. Moore, M.A. Wall, A.J. Schwartz, B.W. Chung, D.K. Shuh, R.K. Schulze, and J.G. Tobin, "The Failure of Russell-Saunders Coupling in the 5f States of Plutonium", Phys. Rev. Lett. **90**, 196404 (May 2003). - 3. G. van der Laan, K.T. Moore, J.G. Tobin, B.W. Chung, M.A. Wall, and A.J. Schwartz, ,"Applicability of the spin-orbit sum rule for the actinide 5f states," Phys. Rev. Lett. **93**, 097401 (Aug 2004). - 4. J.G. Tobin, K.T. Moore, B.W. Chung, M.A. Wall, A.J. Schwartz, G. van der Laan, and A.L. Kutepov, "Competition Between Delocalization and Spin-Orbit Splitting in the Actinide 5f States," Phys. Rev. B **72**, 085109 (2005). 5. S.W. Yu, T. Komesu, B.W. Chung, G.D. Waddill, S.A. Morton, and J.G. Tobin, "f-electron correlations in nonmagnetic Ce studied by means of spin-resolved resonant photoemission," Phys. Rev. B 73, 075116 (2006); J.G. Tobin, S.A. Morton, B.W. Chung, S.W. Yu and G.D. Waddill, "Spin-Resolved Electronic Structure Studies of Non-Magnetic Systems: Possible Observation of the Fano Effect in Polycrystal Ce," Physica B, 378-380, xxxxx (May 2006). 6. J.G. Tobin, M.T. Butterfield, N.E. Teslich Jr., R.A. Bliss, M.A. Wall, A.K. McMahan, B.W. Chung and A.J. Schwartz, "Using Nano-focussed Bremstrahlung Isochromat Spectroscopy (nBIS) to Determine the Unoccupied Electronic Structure of Pu," in "Recent Advances in Actinide Science," published by the Royal Society of Chemistry, as part of the Actinides 2005 Meeting in Manchester, UK, July 05; accepted 2005 # Electronic properties of Pu-Am #### Ladia Havela Prague, Czech Republic #### **Abstract** The specific position of Pu just at the localization threshold makes it very sensitive to external variables. Surprizingly, various allotropic phases have nearly identical weak magnetic susceptibility, i despite a large volume expansion exceeding 20% for the fcc delta-Pu comparing to monoclinic alpha-Pu. i This makes the scenario, in which the volume expansion is the way to formation of magnetic moments, rather questionable. To resolve the issue whether an additional lattice expansion can lead to a 5f localization beyond the delta-Pu level and/or to onset of magnetism we focused on the Pu-Am system. The solid solution of Am in Pu stabilizes the fcc phase down to the lowest temperatures, expanding the volume. Available experimetal data indicate that the magnetic properties remain weakly paramagnetic up to at least 30% Am. Similarly, the gamma coefficient of the specific heat per Pu atom does not increase, and very little variations of the character of the 5f states are indicated by photoelectron spectroscopy. The experimental findings can be understood on the basis of LSDA+U calculations of the Pu-Am system, which reveal very little impact of varying the Am concentration and expanding the lattice on the Pu-5f states and their non-magnetic state. #### Some aspects of the calculation of spin and orbital magnetization densities #### **Mike Brooks** Uppsala, Sweden #### **Abstract** The relationships between current, magnetic moment and magnetization densities are discussed. The approximations made in obtaining these densities from Ab initio energy band calculations are outlined. Particular emphasis is placed upon the interpretation of neutron diffraction experiments on intermetallics containing cerium or actinides with small magnetic moments, where the bonding electron density and spin density from the broad 5d or 6d bands becomes important. Since the bonding spin densities are absent in atomic calculations the entire interpretation of the experiments may be changed. Examples are CeFe₂ and UFe₂ where consistency between neutron diffraction and XMCD experiments is obtained. # Strong Correlations Across the Actinide Series: #### Gabi Kotliar Rutgers, United States #### **Abstract** The actinides realizations of many interesting many body physics phenomena such as the Mott transition, and provide the motivation for the developments of first principles methods to correlated materials. In this talk we will discuss some of the lessons learned from applying realistic Dynamical Mean Field Theory to Plutonium and Americium and contrast the Mott transition in these two systems. # Calculation of Spectroscopic Properties of Actinide compounds #### **Hubert Ebert** Univ. München, Germany #### **Abstract** Electron spectroscopies are the most direct experimental tool to probe the electronic structure of a material. However, to allow for a one-to-one comparison with theory the calculation of corresponding spectra has to deal in an adequate way with all aspects of the electronic structure and also to account properly for the experimental situation. For actinide compounds this requires in particular an adequate treatment of relativistic as well as correlation effects. In our contribution we present a corresponding theoretical description of magnetic Compton scattering that is used to probe the spin magnetic properties. In a second study dynamical mean field theory (DMFT) is used to achieve at an improved description of the optical and magnetooptical properties of actinide compounds. # Spectral Density Functional Calculations in d and f electron systems Sergej Savrasov University of California, United States #### **Abstract** We will discuss spectral density functional method used to calculate total energies and one electron spectral functions of strongly correlated systems. The method employs dynamical mean field theory and exact diagonalization technique as a self-consistent algorithm to find redistribution of spectral weight originally deduced from density functional LDA band structures. As a result, a much wider class of systems showing phenomena such as Mott transition, atomic multiplets, Kondo effect, ordered and disordered atomic magnetism, etc can be explored. Aplications to Mott insulating oxides, actinides and heavy fermion superconductors will be dicussed and contrasted to experimental data and predictions of LDA band structures. # High Pressure Structural Phase Transformations in Curium, Americium and Americium Curium alloys # Rajeev Ahuja University of Uppsala, Sweden #### **Abstract** Density-functional electronic structure calculations have been used to investigate the high pressure behavior of curium (Cm), americium (Am) and americium-curium alloys (AmCm). The phase transitions from fcc to the low symmetry structures are shown to originate from a drastic change in the nature of the electronic structure induced by the elevated pressure. For the low density phases, an orbital polarization correction to the local spin density(LSD) theory was applied. Gradient terms of the electron density were included in the calculation of the exchange/correlation energy and potential, according to the generalized gradient approximation (GGA). Theory compares rather well with our recent experimental data (Science 309, 110 (2005)). The new phase (Cm-III) phase is linked to magnetism. # Ab initio study of the electronic properties and Fermi surface # Sebastien Lebegue LCM3B (UMR UHP -CNRS 7036), France #### **Abstract** The electronic structure of the uranium dipnictides UX_2 (X=As, Sb, and Bi) is investigated by means of it ab initio calculations based on density functional theory. The calculated Fermi surfaces are presented and compared to available experimental models obtained from de Haasvan Alphen experiments. In agreement with experiments they are found to have a significant two dimensional character. Also, the change of the electronic properties through the series is discussed. #### References S. Lebègue, P. M. Oppeneer, and O. Eriksson Phys. Rev. B 73, 045119 (2006) # Localization of 5f Electrons and Phase Transitions in Americium #### **Michel Penicaud** CEA. France ### **Abstract** Density-functional electronic calculations have been used to investigate the high-pressure behavior of americium. The phase transitions calculated agree with the recent sequence obtained experimentally under pressure; double hexagonal close packed \rightarrow face centered cubic \rightarrow face centered orthorhombic \rightarrow primitive orthorhombic. In the first three phases the 5f electrons are found localized, only in the fourth phase (Am IV) the 5f electrons are found delocalized. The localization of the 5f electrons is modeled by an anti-ferromagnetic configuration which has a lower energy than the ferromagnetic ones. In this study the complex crystal structures have been fully relaxed. # The microscopic 5f magnetisation of the superconductor PuCoGa5 **Arno Hiess** ILL, France #### **Abstract** $PuCoGa_5$ is a superconductor with a critical temperature of T = 18 K and an upper critical field estimated to exceed Bc2 > 70 T; both parameters are records in this class of intermetallic strongly correlated electron systems [1]. The superconductivity is thought to be unconventional and carried by strongly correlated electrons involving the 5f electrons of plutonium [2]. No magnetic order has been observed in $PuCoGa_5$ down to T = 1 K, the lowest temperature measured. Those measurements suggest the bulk magnetic susceptibility to follow a modified Curie-Weiss behaviour in the normal state with an effective moment $\mu = 0.5 \mu_B$, and the induced magnetic moment at B = 10 T and T = 20 K had been proposed to correspond to about $\mu = 0.01 \ \mu_B$. To investigate the microscopic magnetic properties further and possibly to shed light on the relevance of the magnetism for the superconductivity, we here report on experiments using polarised neutron diffraction. This experimental technique is sensitive to periodically arranged magnetic moments only and allows determination of the Pu 5f form factor. The method is it insensitive to any magnetic contribution from random impurities or sample mount. The polarised neutron experiment has been performed on the hot neutron diffractomater D3 at the ILL i after determination of crystallographic parameters under similar experimental conditions by non-polarised neutron diffraction on D9. We used a large single crystal (2 * 2 * 4 mm³ grown from 242Pu. We discovered that the induced magnetic moment is even smaller than previously reported. New bulk susceptibility measurements performed on the same single crystal are consistent with the neutron investigations. This result challenges the currently discussed models for the superconductivity in this weakly magnetic compound. #### References [1] J. L. Sarrao et al., Nature 420, 297 (2002) [2] N. J. Curro et al., Nature 434, 622 (2005) Lattice dynamics of light actinides Johann Bouchet CEA-DIF, France # Calculated de Haas-van Alphen frequencies of NpCoGa5 Ingo Opahle IFW Dresden, Germany #### **Abstract** The electronic structure and magnetic properties of NpCoGa₅ are investigated in the framework of relativistic density functional theory in the local spin density approximation (LSDA) with and without orbital polarization (OP) corrections. A detailed analysis of the Fermi surface is presented. Comparison of the calculated angular dependence of the de Haas-van Alphen frequencies with recent experimental data shows that LSDA reproduces the main features of the Fermi surface topology, while the spin and orbital moments of NpCoGa₅ are less well described. The inclusion of OP corrections leads to a very good agreement between calculated and measured de Haas-van Alphen frequencies, but does not yield a significant improvement of the calculated magnetic properties. We predict that NpCoGa₅ shows an intrinsic GMR effect at moderate magnetic field. #### References I. Opahle, S. Elgazzar, V. D. P. Servedio, Manuel Richter, and P. M. Oppeneer, Europhys. Lett. 74 (2006) 124. # Excess Magnetic Susceptibility Arising From Self Damage in Pu and Pu Alloys Scott McCall LLNL, United States #### **Abstract** The 5f-electrons of both α -Pu and δ -Pu occupy a narrow f-band as indicated by both the magnitude of the electronic specific heat and the large Pauli magnetic susceptibility ($\sim 500 \, \mu$ emu/mol Pu), with no indication of local magnetic moments in the "pure" metal. Pu decays by emission of a 5 MeV alpha particle and corresponding 86 keV U recoil, generating a damage cascade of \sim 2500 vacancies and interstitials. Most of these immediately recombine, but a few hundred defects remain, and at low temperatures (T \langle 35K), they become frozen within the lattice. This damage is observable as an increase in the magnetic susceptibility with time (damage) that returns to the undamaged initial (t=0) value after annealing to 350K. Thus the excess magnetic susceptibility (EMS) arises from the defects, and not the decay products which are unaffected by thermal annealing. The EMS is well described by a two component function: $\chi_{\nu}(1-\exp(-\frac{\pi}{2}))$ t/τ))+ χ_D 't, where both χ_{ν} and χ_D ' are functions of temperature, while the characteristic time, τ , is temperature independent with $\tau_{\alpha} \rangle \tau_{\delta}$. These characteristic times are inversely proportional to a volume of magnetic influence arising from the damage cascades that is significantly larger than the region of physical damage predicted by simulations. The temperature dependence of χ_{ν} obeys a Curie-Weiss law which suggests there are evolving localized magnetic moments and hinting at characteristics of the 5f electrons hidden in the undamaged material. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. #### Probing the magnetism of acinides with μ SR techniques # **Alain Yaouanc** CEA/DSM, Departement de Recherche Fondamentale sur la Matiere Condensee F-38054 Grenoble Cedex 9, France, France #### **Abstract** As the nuclear magnetic resonance (NMR) techniques, the positive muon spin rotation and relaxation (μ SR) techniques provide information on the static and dynamical properties of the magnetic field at the probe site. Taking examples from the published literature, we shall illustrate the possibilities offered by these techniques. One of their key characteristics is their ability to detect magnetic moments which may not be dipole-like. NpO₂ offers a typical example. One may observe magnetic reflections in diffraction techniques while no magnetic moments are detected by μ SR because of their relatively fast fluctuation rate. UPt₃ is an example. In contrast to NMR, measurements can be carried out in truely zero field. This allows to detect quasi-static small itinerant magnetic moments as in UGe₂. Finally, we shall discuss the investigation of the superconductivity of materials, in particular the symmetry and the temperature dependence of the London penetration depth. # Magnetic Susceptibility of PuCoGa₅ from ITU-SQUID measurements #### **Franck Wastin** Karlsruhe, Germany #### **Abstract** Magnetism and unconventional superconductivity are interdependent in strongly correlated electron systems. PuCoGa₅ displays superconducting behavior, with a critical temperature of Tc = 18.5 K and an upper critical field Bc2(0) estimated to exceed 70 T [1], considered to be unconventional and carried by strongly correlated 5f electrons [2]. No magnetic order has been observed down to T = 1 K but the temperature dependence of the magnetic susceptibility of PuCoGa₅ is indicative of local-moment behavior close to that expected for Pu³⁺. Initial bulk measurements on a single crystal were reported to follow a modified Curie-Weiss behavior in the normal state with an effective moment $\mu_{eff} = 0.68 \ \mu_B$, and an induced magnetic moment at B = 1 T and T = 20 K corresponding to about 5.55 m μ_B . However, further unpublished experiments on various single and polycrystalline samples led to a large discrepancy in the induced moment measured. In this work, we present the efforts conducted at ITU to distinguish the intrinsic magnetic susceptibility of PuCoGa₅. #### References - [1] J. L. Sarrao et al., Nature 420, 297 (2002) - [2] N. J. Curro et al., Nature 434, 622 (2005) # X-ray Magnetic Circular Dichroism study of U/Fe multilayers ### **Fabrice Wilhelm** ESRF, France #### **Abstract** X-ray magnetic circular dichroism (XMCD) measurements have been performed at the U M4,5-edges and Fe K-edge on well-defined uranium/iron multilayers with different compositions. i The multilayers have layer thicknesses in the range 9 to 40 A for uranium and 9 to 34 A for iron. i Temperature and element-specific magnetic hysteresis curves show that the easy magnetization axis lies in-plane. i At both 10 K and room temperature, the U layers have been found to be magnetically polarized in all of the multilayers studied. An induced U magnetic moment (maximum value $\sim 0.1~\mu_B$, coupled parallel to the Fe magnetic layers through the exchange coupling, has been observed and is mainly located at the interfaces. The value of the orbital to spin ratio for the induced U moments is ~ 2.1 , suggesting moderate hybridization between the U 5f and Fe 3d states. Theory of Am and Pu systems. **Axel Svane** # Aarhus, Denmark ## **Abstract** Two aspects of the theory of electronic structure of actinides are addressed. Equilibrium lattice constants and effective valencies are calculated on the basis of the self-interaction corrected local spin density total energy functional. We consider the actinide elements Pu, Am, Cm and Bk, as well as alloys of Pu and Am. Secondly, the spectral function of well localized actinide systems is evaluated on the basis of the multiplet Hubbard-I approach, where an additional interaction is introduced to represent fluctuations of the f-shell configuration. The approach is applied to Am and PuSe, and gives good agreement with photoemission data. # 5 Program Day 1: June 01 2006 **Session: 1 Experimental Aspects** 09:30 to 10:15: Presentation Orbital Ordering in actinide oxides: new perspectives on old problems Gerry Lander 10:15 to 11:00: Presentation Determining the Electronic Structure of Pu using Unorthodox Spectroscopies James Tobin 11:00 to 11:30 : Coffee Break 11:30 to 11:55: Presentation 11:55 to 12:20 : Presentation Magnetic Susceptibility of PuCoGa5 from ITU-SQUID measurements Franck Wastin 12:20 to 14:00 : Lunch Break **Session : 2 Theoretical Aspects** 14:00 to 14:40 : Presentation Some aspects of the calculation of spin and orbital magnetization densities Mike Brooks 14:40 to 15:20: Presentation Theory of Am and Pu systems. Axel Svane 15:20 to 16:00: Presentation Spectral Density Functional Calculations in d and f electron systems Sergej Savrasov 16:00 to 16:30 : Coffee Break 16:30 to 17:00: Presentation Calculation of Spectroscopic Properties of Actinide compounds **Hubert Ebert** Day 2: June 02 2006 Session: 3 09:00 to 09:40: Presentation **Strong Correlations Across the Actinide Series:** Gabi Kotliar 09:40 to 10:05: Presentation Excess Magnetic Susceptibility Arising From Self Damage in Pu and Pu Alloys Scott McCall 10:05 to 10:30: Presentation High Pressure Structural Phase Transformations in Curium, Americium and Americium Curium alloys Rajeev Ahuja 10:30 to 11:00 : Coffee Break 11:00 to 11:15: Presentation Ab initio study of the electronic properties and Fermi surface Sebastien Lebegue 11:15 to 11:40 : Presentation **Electronic properties of Pu-Am** Ladia Havela 11:40 to 12:05 : Presentation **Localization of 5f Electrons and Phase Transitions in Americium** Michel Penicaud 12:05 to 12:30: Presentation X-ray dichroism studies of the crystalline and magnetic properties of UFe2 Andrei Rogalev 12:30 to 14:25 : Lunch Break Session: 4 14:25 to 14:50: Presentation The microscopic 5f magnetisation of the superconductor PuCoGa5 Arno Hiess 14:50 to 15:15: Presentation How to calculate the critical temperature of superconductors E.K.U. Gross 15:15 to 15:30: Presentation # Lattice dynamics of light actinides Johann Bouchet 15:30 to 16:00 : Coffee Break 16:00 to 16:15 : Presentation X-ray Magnetic Circular Dichroism study of U/Fe multilayers Fabrice Wilhelm 16:15 to 16:40: Presentation Calculated de Haas-van Alphen frequencies of NpCoGa5 Ingo Opahle # 6 Organizer's report # 6.1 Conclusions. - 1. Great meeting. - 2. Exciting science - 3. Expanding field - 4. Are we starting to understand the electronic structure of Pu and other actinides? The valence electronic structures of the actinide metals and alloys in general and plutonium (Pu) in particular remain mired in controversy. Interestingly, the various phases of Pu metal provide a microcosm of the metallic actinides as a whole. Thus, unravelling the nuances of the interplay of electronic and geometric structures in Pu will illuminate the properties of all transuranic metals. In a sense, the behavior of the Pu 5f electrons is completely counter-intuitive. The dense phase, alpha, has some semblance of delocalization in the 5f valence bands and can be treated theoretically within single electron models such as the Local Density Approximation. The alpha phase is monoclinic, which is a low symmetry ordering. The less dense delta-phase is fcc and exhibits evidence of localized and/or correlated electronic behavior. The fcc is a high symmetry phase which is normally associated with superior wavefunction overlap in d state metals. But herein is the key: the linear combinations of the 5f's do not produce the nicely lobed wavefunctions with symmetry about the x, y, z and diagonal axes, as occurs for d states. Instead, the linear combinations of f -states have oddly lobed and badly directed wavefunctions which match very poorly with the high symmetry of the fcc structure. In the rare earths and lanthanides, this odd lobing is of no consequence: generally, the 4f valence states are inside the outer 5d, 6p and 6s electrons and can be treated as isolated, atomic-like orbitals that do not participate in chemical bonding. In the actinides, the 5f's are less well shielded. Shielding is undoubtedly a key issue and relates to the volume changes. In fact, the 20% volume increase of Pu between the alpha and delta phases is a reflection of the discontinuous 30% volume jump between Pu and Am, as one moves along the row of actinide elements. Furthermore, the fcc delta- Pu can not be treated theoretically without ad hoc corrections, e.g., the addition of Coulombic repulsion terms to LDA formalisms. Finally, we have not even begun to deal with the issue of dilute alloy formation and its impact upon the electronic structure of metallic actinides. The upshot of this is that the valence electronic structure of Pu in particular and the actinides in general is only poorly understood. | CECAM | worksh | nop Repor | t | |--------------|--------|-----------|---| |--------------|--------|-----------|---| 5. There are still a lot of challenges ahead # 6.2 Recommendations. | 1. Let's meet again: IWOSMA- | -4 is planned to be held in | n Prague and to be org | anized by Ladia | |------------------------------|-----------------------------|------------------------|-----------------| | Havela. | | | | - 2. Do more experiments on actinides. - 3. Work on clean samples. - 4. Use a multi-technique approach and explore core-hole spectroscopy. - 5. Do more calculations for these systems taking their correlated nature into account.